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Abstract 

U.S. troops deployed to the Middle East are often exposed to dust storms with particulate matter 

(PM) levels above the military exposure guideline of 150 µg/m
3 

which can result in an increased 

incidence of pulmonary diseases. Millennium Cohort Study results also substantiate these 

respiratory health concerns.  Further, metals and harmful chemical components present in Middle 

Eastern sand have been identified as contributing factors for toxicity. In order to study the 

toxicological mechanisms in neuronal cells, we evaluated the effects of the soluble components 

of Afghanistan sand on rat dopaminergic neuronal cell (MES 23.5). Sterilized sand samples 

(50% W/V) were extracted overnight in serum free media. Different concentrations of extracted 

samples from Afghanistan sand (equivalent to 100-500 mg of sand/ml) were added to the 

neuronal cells for 24 hr and cytotoxicity assessed estimating cellular release of lactate 

dehydrogenase (LDH) and 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide 

(MTT) assay. In neuronal cells, exposure to Afghanistan sand dust extract increased LDH release 

dose-dependently with statistically significant increase at higher concentrations (400 and 500 

mg/ml), and decreased MTT metabolism. In addition, sand extract exposure resulted in 

significant reduction in total antioxidant capacity (TAC) with an elevation of reactive oxygen 

species (ROS). However, N-acetyl cysteine (NAC) pretreated cells showed decreased sand 

extract-induced ROS and cytotoxicity. This indicated that Afghanistan sand extracts produced 

cytotoxicity through an oxidative stress mediated mode of action. Moreover, the toxicity was 

associated with mitochondrial dysfunction (reduced membrane potential) followed by release of 

cytochrome c and increased caspase-3 activity. All these apoptotic components activated by sand 

extracts were significantly reduced in the presence of cyclosporine A, NAC or z-VAD (caspase-3 

inhibitor).Taken together, this study indicates that soluble components of Afghanistan sands can 

be toxic to neuronal cells in culture by enhancing ROS and impairing mitochondrial function, 

although the relevance of these results to the in vivo situation remains unclear. 

Keywords: Sand, Particulate Matter, Neurons, Cytotoxicity, Oxidative Stress 
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Introduction 

U.S. military personnel deployed to the Middle East in support of Operation Iraqi Freedom and 

Operation Enduring Freedom have concerns regarding exposure to elevated levels of dust from 

blowing desert sand (Englehardt, 2007; Bowman, 2004). Desert dust easily enters the 

atmosphere as a result of natural (e.g., wind erosion) or anthropogenic (e.g., vehicle/personnel 

movement, construction activities) processes (McDonald and Caldwell, 2008). Numerous metals 

(Lyles et al., 2008; Perdue et al., 1992; Weir, 2004) and pathogens (Lyles et al., 2005; Griffin, 

2007) have been detected in particulate matter (PM) collected from the Middle East. Airborne 

PM has been linked to a range of serious respiratory and cardiovascular health problems. It is 

well recognized that deposition of a variety of PM in the lung can result in the generation of 

inflammatory cytokines and the subsequent development of lung injury (Dreher et al., 1997; 

Gavett et al., 1997; Kodavanti et al., 1999; Scapellato and Lotti, 2007).  The key health effects 

associated with exposure to ambient PM include: increased risk of myocardial infarction, 

premature mortality, decreased lung function and aggravation of asthma, chronic bronchitis, and 

other respiratory and cardiovascular disease (Gordon, 2007; Simkhovich et al., 2008).  Recent 

epidemiologic studies estimate that exposures to PM among the general US population may 

result in tens of thousands of excess deaths per year, and many more cases of illness 

(Simkhovich et al., 2008). Recent studies further suggest that transition metals, endotoxins and 

other contaminants within particulate matter may actually mediate the adverse effects 

(Donaldson and MacNee, 2001). An association between metal-containing particulates and 

increased lower respiratory-tract infections and chronic fibrotic lung disease has been well 

documented in occupational environments (Howden et al., 1988). Wallenborn et al. (2007) also 

demonstrated that PM associated metals can produce localized lung inflammation and be 

translocated to extra pulmonary organs following intra-tracheal instillations. 

Inhalation of sand dust has been associated with a variety of adverse health effects.  Smith and 

co-workers (2009) have shown that deployment to Iraq and Afghanistan where sandstorms are 

common was associated with increased respiratory symptoms in ground-based military 

personnel. Inhabitants of deserts can also develop Desert Lung Syndrome, a rare non-progressive 

non-occupational dust pneumoconiosis resulting from silica-containing dust deposition in the 

lungs (Bar-Ziv and Goldberg, 1974).  This syndrome generally develops after years of heavy 
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exposure to sand particles (Nouh, 1989).  An acute desert-related lung disease described as 

Desert Storm Pneumonitis was found to occur following inhalation of pigeon droppings and fine 

Saudi dust (Korenyi-Both et al., 1992; 1997).  Sporadic cases of severe acute eosinophilic 

pneumonitis with unknown etiology have also been reported among several U.S. military 

personnel deployed to Southwest Asia (Shorr, 2004).  Asian sand dust exposure is associated 

with increased daily mortality in Seoul, Korea, and Taipei, Taiwan (Kwon et al., 2002) and 

cardiovascular and respiratory dysfunction in Taipei (Bell et al., 2008).   

Although the historical focus of PM toxicity has been cardiopulmonary targets, it is now 

appreciated that inhaled nano-size (<100 nm) PM particles quickly exit the lungs and enter the 

circulation where they can be distributed to various organ systems (i.e., liver, kidneys, testes and 

lymph nodes) (Kreyling et al., 2002; Oberdörster et al., 2002; Takenaka et al., 2001). Damage to 

these secondary targets can also occur through oxidative stress pathways (Cordier et al., 2004; 

Samet et al., 2004; Pohjola et al., 2003). The brain is vulnerable to oxidative stress damage 

because of its high energy use, low levels of endogenous scavengers (e.g., vitamin C, catalase, 

superoxide dismutase etc.), high metabolic demands, extensive axonal and dendritic networks, 

and high cellular content of lipids and proteins (Mattson, 2001). The possibility that the brain 

might also be affected by PM was first raised in a 2002 editorial (Oberdörster and Utell, 2002) 

and followed by reports showing that nano-size particles could cross  the blood brain barrier 

(BBB) (Lockman et al., 2004) and physically enter the central nervous system (CNS) of animals 

in small numbers (Kreyling et al., 2002). 

There is also evidence that inhaled particles can reach the brain, either by transport along the 

olfactory nerve or possibly by penetration of BBB that is compromised by systemic effects of 

PM (Oberdörster et al., 2002; 2004). The activities of signaling pathways that mediate 

inflammatory responses can be up-regulated in the brains of mice exposed to concentrated 

ambient particles (CAPs) derived from areas near primary emission sources (Campbell et al., 

2005).  In addition, biomarkers of oxidative stress and tissue injury in the brain are observed at a 

higher concentration in mice following exposure to CAPs for as long as 2-weeks post-exposure 

(Campbell et al., 2005). 
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Based on the high exposure levels and the range of contaminants present in the PM, ambient 

particulates in the Middle East may pose a health hazard. This pilot study was designed to 

examine the potential cytotoxic effects following exposure to soluble components of Afghanistan 

sand obtained from military-occupied regions. 

 

Materials and Methods 

 

The MES 23.5 cell line derived from somatic cell fusion of rat embryonic mesencephalic cells 

and the murine neuroblastomaglioma cell line N18TG2, was obtained from Dr. C. Rochet 

(Purdue University, West Lafayette, IN). MES 23.5 cells are conditionally-immortalized neurons 

with dopaminergic characteristics, extensively used for in vitro toxicity study (Parikh et al., 

1995; Zhang et al., 2009; Prabhakaran et al., 2009). Cells were cultured on poly-l-lysine-pre-

coated plates in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 5% fetal 

bovine serum(FBS), 2% new born calf serum (NBS), 15 mM HEPES and SATO components 

(insulin 5 mg/ml, transferrin 5 mg/ml, pyruvic acid 48.6 mg/ml, putrescine 4 mg/ml, sodium 

selenite 5 ng/ml, progesterone 6.3 ng/ml) at 37
o
C in an atmosphere of 5% CO2 and 95% air. 

Throughout this study cells were used for experiments 48 hr after plating. Afghanistan sand 

sample (raw material) used in these studies was provided by Capt M.B. Lyles at The Navy 

Bureau of Medicine and Surgery (BUMED).   

 

Sand Extract Preparation 

The high levels of sand dust generated from blowing desert sand have different sized dust 

particles (predominantly small particles of less than 10 µM capable of reaching deep lungs) with 

soluble metal contents that may possibly cause health problems (desert lung syndrome, desert 

storm pneumonitis, acute eosinophilic pneumonia, etc.).  The trace elemental analysis of sand 

dust extracts through inductively coupled plasma mass spectrometer (ICP-MS) showed the 

presence of several metals at low level compared to raw sand materials (Table 1). Analysis was 

performed at Dr. José Centeno Lab, Division of Biophysical Toxicology, Department of 

Environmental and Infectious Disease Sciences, U.S. Armed Forces Institute of Pathology, 

Washington, DC. To understand the soluble components of sand effects on neuronal cells, bulk 

sand samples collected from Afghanistan (Khost) were autoclaved (to eliminate bacterial 

contamination during cell culture) upon receipt and were extracted. 50% w/v sand extracts were 
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prepared, 10 g of sand + 20 ml of medium without FBS. The day before exposure samples were 

kept on an orbital shaker overnight at room temperature. Extracts were filtered through a 0.2 μm 

filter and stored at 4°C until cells were exposed. Neuronal cells were exposed to extracts with 

varying concentrations equivalent to 100-500 mg/ml of sand for 24 hr and cytotoxicity was 

assessed by lactate dehydrogenase (LDH) and MTT assay. For all other assays (total antioxidant 

capacity, reactive oxygen species generation, mitochondrial membrane potential, caspase-3 

activity and cytochrome c release), neuronal cells were exposed to 500 mg/ml sand extracts only.  

For control cells, DMEM medium was used.  

 

Assessment of Cytotoxicity 

Lactate dehydrogenase assay: 

The lactate dehydrogenase assay is used to evaluate cell-membrane integrity because the release 

of this large (9-160 KD) enzyme from the cytoplasmic compartment to the supernatant of cells is 

indicative of membrane damage. Based on the reduction of nicotinamide adenine dinucleotide 

(NAD) by the action of LDH to form a tetrazolium dye, the amount of LDH was measured 

spectrophotometrically at 492 nm as per the method of Vassault (1983). The background 

absorbance measured at 660 nm was subtracted from the reading at 492 nm. Cells grown in a 12-

well plate at a density of 1 × 10
6
 cells/well in HBSS were exposed to a range of sand extract 

concentrations (100, 200, 300, 400 and 500 mg/ml) for 24 hr and determined LDH release into 

the medium. 

 

MTT assay: 

The MTT assay is based on a colorimetric system, in which tetrazolium rings of the pale yellow 

MTT are cleaved to form dark blue formazan crystals by the activity of a mitochondrial 

dehydrogenase enzyme from viable cells. The number of healthy cells can be quantified by 

spectrophotometric measurement. The cells were seeded in a 12-well plate at1 × 10
6
 cells/well in 

Hank’s balanced salt solution (HBSS) and exposed to sand extract concentrations (100, 200, 300, 

400 and 500 mg/ml) for 24 hr and MTT assay was performed using a microplate reader as per 

the procedure (Prabhakaran et al., 2009). MTT reconstituted in phosphate buffered solution 

(PBS) was added to each well. Following 24hr incubation, formazan crystals were pelleted by 
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centrifugation and dissolved in a MTT solubilization solution. The absorbance was read at 550 

nm minus the background at 660 nm. 

 

Total Antioxidant Capacity Assay 

The total antioxidant capacity (TAC), accounting for total hydrophilic scavengers, was assayed 

in cytosolic fractions of cell lysates by a spectrophotometric method according to manufacturer’s 

protocol (BioVision). Briefly, TAC was quantitated after exposure to sand extracts (500 mg/ml) 

in the presence and absence of NAC (500 µM) for 24 hr. At the end of exposure cells were 

washed three times with PBS, scraped off from the inserts and transferred to Eppendorf tubes. 

After centrifugation (Eppendorf Mini spin Plus, 850 x g (rcf) 10 min, 6°C), the supernatant was 

removed, 100 µl cold buffer was added and the cell solution was stored on ice. Afterwards, the 

samples were vortexed and sonicated for 2 min on ice. The samples were then centrifuged for a 

second time at 25,000 x g (rcf) at 6°C for 15 min and supernatant was used for the assay. As 

standard solutions, different concentrations of Trolox (a water-soluble tocopherol analogue) were 

used. The test samples were added to the wells. Each sample and standard was measured in 

duplicate. At the end, hydrogen peroxide was quickly added to stop the reaction. The plate was 

covered and incubated on a shaker at room temperature for 5 min and read absorbance at 570 

nm. The resulting TACs are indicated in Trolox equivalents.  

 

Measurement of ROS generation 

 

MES 23.5 cells grown in a polystyrene 96-well plate at a density of 30,000 cells per well were 

treated with 500 mg/ml of sand extract for 24hr in the presence and absence of NAC (500 µM). 

At the end of 24 hr exposure, generation of reactive oxygen species (ROS) was assessed by an 

oxidation-sensitive fluorescent probe DCFH-DA as per the method of Gunasekar et al. (1995). 

DCFH-DA is a non-polar compound that readily defuses into cells, where it is cleaved by 

intracellular esterases to form DCFH and, thereby, is trapped inside the cells. DCFH is oxidized 

to the highly fluorescent 2, 7-dichlorofluorescein (DCF) by ROS. Cells were loaded with 30 mM 

DCFH-DA (Molecular Probes, Eugene, OR) for 30 min at 37°Cin the dark and then washed with 

PBS to remove free DCFH-DA. Following sand extract exposure, the culture medium was 

removed and cells washed twice with PBS. Fluorescence intensity was monitored at excitation 
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wave length of 485 nm and emission wavelength of 535 nm. Values were expressed as percent of 

untreated control groups. 

Mitochondrial membrane potential (ΔΨm) 

The changes in cellular mitochondrial membrane potential (ΔΨm) due to sand exposure was 

monitored using rhodamine 123 (R123) as previously described (Prabhakaran et al., 2005). Since 

the loss of ΔΨm has been linked to the opening of the high-conductance mitochondrial pore 

transition (MPT), CsA, a blocker of MPT, was used to preserve mitochondrial function. MES 

23.5 cells grown in polystyrene 96-well plate at a density of 30,000 cells per well were treated 

with 500 mg/ml sand extract for 3hr in the presence and absence of CsA (10µM). Cells were 

washed twice in Krebs–Ringer Buffer and loaded with 10 mM R123 and then incubated further 

at 37
o
C for 30 min in the dark. Following incubation, cells were washed again twice with Krebs–

Ringer buffer, and changes in R123 fluorescence were monitored using a fluorescence plate 

reader at 498 nm excitation and 525 nm emission. Uptake of R123 into mitochondria is a direct 

reflection of its permeability; an increase of R123 fluorescence reflects a lowering of ΔΨm. 

 

Caspase-3 protease activity 

 

The cleavage of the substrate Ac-DEVD-pNA was used to determine caspase-3 protease activity 

according to the manufacture’s protocol (BioVision Inc., Mountain View, CA). Following sand 

extract exposure (500 mg/ml) in the presence and absence of CsA (10 µM) or z-VAD (100 µM) 

for 12 hr, cells were harvested in PBS and centrifuged at 500 × g for 5 min. The cell pellet was 

further lysed on ice with lysis buffer for 10 min and then centrifuged at 30,000 x g (rcf) for 1 min 

at 4°C. The supernatant was harvested and 80 μg total proteins incubated with buffer containing 

10 mM dithiothreitol and 5 μl of Ac-DEVD-pNA (final concentration 200 μM) at 37°C. The 

chromophore P-nitroanilide was determined at 405 nm with a micro titer plate reader. 

 

Cytochrome c release assay 

 

Quantitation of cytosolic cytochrome c was determined using a cytochrome c ELISA kit (R&D 

Systems, Minneapolis, MN) as described previously (Kaul et al., 2003). Briefly, MES cells (5 

x10
6
 cells) grown in culture wells in serum-free media were exposed to 500 mg/ml of sand 

extract for 3 hr in the presence and absence of CsA at 37°C. After exposure, cells were collected, 
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washed once with ice-cold phosphate-buffered saline (PBS; pH 7.4), and resuspended in 1 ml of 

ice-cold homogenization buffer (10 mM Tris–HCl pH 7.5, 0.3M sucrose, 1 mM 

phenylmethylsulfonyl fluoride, 25 mg/ml aprotinin, 10 mg/ml leupeptin). Following 

homogenization, cells were centrifuged at 15,000 x g (rcf) for 60 min at 4°C. Resulting 

supernatants were collected as cytoplasmic fraction and used to measure cytochrome c release as 

per the protocol provided by the manufacturer. Optical density of each well was then measured at 

450 nm using a micro plate reader (VERSA MAX). 

 

Statistics 

 

Data were expressed as mean + standard error of the mean (S.E.M). One-way analysis of 

variance (ANOVA) followed by Tukey–Kramer procedure for multiple comparisons were used 

to determine statistical differences between treatments. Differences were considered significant 

at p< 0.05. 

 

 

Results 

In this pilot study, dopaminergic MES 23.5 cells were used in order to study potential mode(s) of 

sand-induced toxicity. Cytotoxicity was evaluated following 24 hr of sand exposure by 

estimating LDH and MTT assays. Cell viability decreased with increased concentration of sand 

extracts as observed through increased LDH leakage and reduced mitochondrial function (MTT 

assay) (Fig 1 A & B). Thus, exposure to sand extracts for 24 hr resulted in significant cell 

damage/cell death in a dose-dependent manner above 300 mg/ml. Hence, neuronal cells used for 

all other assays were exposed to the highest dose (500 mg/ml) that caused 50% of the cell death. 

It is well known that oxidative stress generated by the cellular response to external stimuli can be 

due to either increased free radical production and/or the weakening of the cell antioxidant 

defenses, including antioxidant enzymes, lipophilic and hydrophilic scavengers. We measured 

the levels of non-enzymatic hydrophilic total antioxidant capacity and generation of intracellular 

ROS in cells exposed to sand extracts.  ROS was determined by loading cells with DCFH-DA, 

with the resulting increased fluorescence reflected by direct oxidation of DCFH. Exposure to 

sand extract significantly reduced the total antioxidant capacity (TAC) (Fig 2A) while increasing 

the accumulation of ROS (Fig 2B). Pretreatment of cells with NAC (GSH precursor) restored 
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TAC of cells and reduced ROS levels, further confirming the stimulation of intracellular ROS 

generation (Fig 2A & B) following exposure to sand extracts. 

Since mitochondria have been reported to be a primary target of oxidative free radicals 

(Weitsman et al., 2003), in the present study, sand extracts effect on mitochondrial function was 

determined. A 3hr treatment with sand extracts (equivalent to 500 mg of sand /ml) reduced the 

ΔΨm (increased fluorescence) compared to control cells (Fig 3A).  This was further supported by 

mitotracker red uptake study which showed reduced mitochondrial live cells in sand exposed 

neuronal cells (Fig 3B). Presence of CsA blocked the sand extract-induced reduction in ΔΨm,, 

supporting the involvement of MPT in the mitochondrial dysfunction. 

The loss of mitochondrial membrane potential and opening of MPT have been linked to the 

release of cytochrome c from mitochondria. To determine whether exposure to sand extracts can 

affect mitochondria and thereby release cytochrome c, the cytosolic fraction collected from 

exposed cells were used to determine the levels of cytochrome c by ELISA. As shown in Fig 4A, 

a 3 hr treatment with 500 mg/ml sand extracts released cytochrome c into the cytosol. However, 

blocking MPT with CsA preserved the association of cytochrome c with the mitochondria. 

Further, to determine if the loss of cell viability was caspase-dependent, caspase activity was 

measured following sand extracts exposure. We observed increased caspase-3 activity following 

sand exposure in neuronal cells, while zVAD-fmk (a broad spectrum caspase inhibitor) or CsA 

pretreatment significantly reduced the activity (Fig 4B). This suggests that an apoptotic mode of 

cell death is initiated in neuronal cells following exposure to the sand extracts. To conclusively 

demonstrate the involvement of oxidative stress in sand dust-induced mitochondrial mediated 

cell death, the effects of antioxidant (NAC) and the MPT blocker (CsA) on cell viability were 

examined. As shown in Fig 4C, both NAC and CsA pretreatments significantly reduced sand 

extract exposure-induced loss of viability. These results suggest that exposure to sand extracts 

rapidly increases cellular oxidative stress accompanied by loss of ΔΨm and caspase-3 mediated 

cell death. 

Detection of Soluble metal constituents  

In the present study, the elemental analysis of Afghanistan sand dust extract through ICP-MS 

revealed a number of metals existence including barium, strontium, copper, arsenic, nickel, iron, 
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potassium, manganese, and chromium (Table 1). Additional heavy metals (aluminum, titanium, 

zinc, lead, cadmium, cerium, and lanthanum) were measured but the levels were at low detection 

limit.  

 

Discussion 

 

There are currently thousands of U.S. military personnel deployed to Afghanistan who confront 

uncertain environmental and geological health hazards. One issue that has long been posed to 

military men and women is that of inhalation of PM. Massive sand storms are common 

throughout the Middle East, and soldiers deployed to these areas are associated with induction of 

respiratory complaints, in addition to dermal and ocular conditions. The report indicates that the 

majority of the particulates in sand collected from a site in Afghanistan have elevated levels of 

PM2.5 which are health concern (Engelbrecht et al., 2009). These particles, when inhaled, can be 

deposited deep into the lungs. Thus, if potentially toxic agents are bioavailable and diffuse into 

the blood, they then could be carried throughout the body potentially affecting the central 

nervous, endocrine and immune systems, among other target tissues and organs. Based on the 

high exposure levels and the range of contaminants present in the PM, ambient particulates in the 

Middle East may pose a health hazard.  

 

In the present study, we observed that sand derived PM extracts significantly induced neuronal 

cell death by a mechanism involving the generation of free radicals and activation of the 

mitochondria-regulated death pathway. Among a variety of environmental pollutants or 

bioorganic materials adsorbed onto Afghanistan dust particles, we evaluated how soluble 

components of sand dust material contribute to cell damage.  In this study the cytotoxic effects 

on the neuronal cells due to the sand extracts were observed with higher levels of sand extracts 

(>300 mg/ml). A role for the mitochondria-regulated death pathway is suggested through our 

finding that the sand extracts caused decreases in mitochondrial membrane potential which was 

accompanied by cytochrome c release and caspase-3 activation. We also observed that presence 

of an MPT pore blocker CsA and caspase inhibitor (z-VAD) inhibited mitochondrial membrane 

potential and apoptosis.  To the best of our knowledge, there has been no report studying the 

effect of sand dust on neuronal cell death, particularly using in vitro models. This study is the 
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first to show the effect of soluble sand extract components on a cell death pathway in 

dopaminergic neurons. Further, MES 23.5 cell lines that were used in this study are excellent 

model to understand the mechanism of neurotoxicity of any chemicals or PM exposure. Neuronal 

cells are a major component of the brain responsible for communication, maintenance and 

functioning of the body and also a potential target for oxidative stress in several disorders 

(Mattson, 2000; 2001; Yen et al., 2011; Tobon et al., 2010). It was reported earlier that PM 

particles carry numerous bio-contaminants that are capable of triggering free radical production 

and cytokine release responsible for mitochondrial membrane damage, inflammation and 

apoptosis (Øvrevik et al., 2009; Davies and Holgate, 2002). In the present study, the 

depolarization of mitochondrial membrane potential and free radical generation marks the 

beginning of apoptosis. A significant reduction of ΔΨm and caspase-3 activation was observed 

in NAC treated neuronal cells following exposure to sand extract. Thus, the known oxidative 

stress property of PM particles and biochemical evidence from our study indicates oxidative 

stress damage to the neuronal cells.  

 

The role for metal components in the PM dust in neurotoxicity remains unclear. There is growing 

evidence that the soluble metal component of atmospheric dusts may be responsible for dust-

induced pulmonary injury (Chen and Lippmann, 2009).  For example, intratracheal instillation of 

the water soluble component of residual oil fly ash (ROFA) can result in pulmonary 

inflammation (Dreher et al., 1997), and lung responses vary depending upon the metal content of 

the ROFA sample (Dreher et al., 1997; Gavett et al., 1997; Kodavanti et al., 1999). Pulmonary 

toxicity has also been reported with Canadian dusts found in ambient air samples (Adamson et 

al., 2003; Prieditis and Adamson, 2002). In the present study, a number of metals including 

barium, strontium, copper, arsenic, iron, potassium, nickel, manganese, and chromium were 

detected in the soluble extracts of Afghanistan sand sample (Table 1). Similar analytical 

chemical results have been reported elsewhere (Perdue et al., 1992). Some of these metals might 

have affected the mitochondrial function through permeabilization of the mitochondrial 

membrane as reported previously (Belyaeva, 2010; Belyaeva et al., 2012). Thus, the induction of 

toxicity in neuronal cells in the present study may indicate the possible involvement of metal 

contribution. 
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Ambient and occupational exposure to PM has been linked with increased hospitalization and 

mortality from cardiovascular disease, respiratory disease, and lung cancer (Brook et al., 2004; 

Vineis and Husgafvel-Pursiainen, 2005). In-vitro and in-vivo studies have identified the 

generation of reactive oxygen species (ROS) and increased oxidative stress as the primary 

biological processes that may contribute to such a variety of diverse health effects (Li et al., 

2003; Chahine et al., 2007). Epidemiologic (Brook et al., 2004; Schulz et al., 2005) and in-vivo 

studies (Chen and Hwang, 2005) suggest that both PM mass and PM metal components 

contribute to ROS generation. The brain is vulnerable to oxidative stress damage because of its 

high energy use, low levels of endogenous scavengers (e.g., vitamin C, catalase, superoxide 

dismutase), high metabolic demands, extensive axonal and dendritic networks, and high cellular 

content of lipids and proteins (Mattson, 2001). The possibility that the brain might also be 

targeted by PM was first raised in a 2002 editorial (Oberdörster and Utell, 2002) and followed by 

reports showing that nano size particles could cross  the blood-brain-barrier (Lockman et al., 

2004) and physically enter the central nervous system (CNS) of animals in small concentrations 

(Kreyling et al., 2002). Beyond this mechanism, the brain may also be targeted through the 

olfactory pathway while exposed to some of the metals that exists in sand extracts via inhalation 

(Tjalve and Henriksson, 1999; Brenneman, et al., 2000; Persson et al., 2003). 

 

Studies exploring the pathogenic mechanisms of PM have implicated a role for ROS derived 

from metal-catalyzed reactions (Knaapen et al., 2002; Soukup et al., 2000; Donaldson and 

Brown 1997). The soluble metal component in PM is also implicated in generating ROS, such as 

hydroxyl radicals, and causing the release of inflammatory cytokines such as IL-8 and IL-6 from 

cultured respiratory epithelial cells (Donaldson and Brown 1997, Dellinger et al., 2001). 

Collectively, these findings suggest that metal-derived free radicals mediate PM-induced DNA 

damage and apoptosis of cultured respiratory epithelial cells. 

 

Using a mechanistic approach in the present pilot study, we showed that Afghanistan sand 

extract contents produced toxicity in neuronal cells. While this is the first study to specifically 

investigate the neuronal effects of Afghanistan sand extracts, data are available on adverse health 

effects of Middle East dust. A study by Struve et al. (2010) used particles from different regions 

of the Middle East and founded respiratory cellular toxicity in pulmonary epithelial cell culture 

model. Increased LDH and decreased MTT following 24 hr exposure to metals and PM samples, 



 

16 

 

leading to cytotoxicity and this was increased with increased duration of exposure.  In the present 

study, the room temperature extractions of sand dust for 24 hr produce concentrations of 

materials in the extractant that may not mimic the concentrations that might be expected in the 

brain following inhalation of PM in a real world setting. In vivo studies are required to confirm 

the relevance of the in vitro work using sand extracts. Although the relevance of our in vitro 

findings to in vivo conditions requires further in-depth study, there is some supportive 

information showing that PM induces adverse consequences after short-term exposure periods. 

In addition to Struve et al (2010) report, studies by Gurgueira and associates (2002) indicated 

that rats exposed to aerosolized PM for 3-5 hr showed increase in ROS, as assessed by 

chemiluminescence, and increase in the activities of adaptive antioxidant enzymes (e.g., catalase 

and superoxide dismutase). Salvi and coworkers (1999) demonstrated that a 1-hr exposure of 

normal individuals to diesel exhaust increased acute inflammatory responses in the airways. 

Gilmour and associates (1998) demonstrated that toxic particulates rapidly cross the epithelium 

and induce interstitial inflammation by a mechanism involving ROS.  

 

Conclusion: 

In summary, our study indicates that in vitro exposure of rodent neuronal cells to the soluble 

extract of Afghanistan sand induces apoptosis via a mode of action involving the generation of 

free radicals and activation of the mitochondria-regulated death pathway. Further studies are 

needed to elucidate the mode of action of Afghanistan sand dust extract-induced apoptosis and 

the linkage between mitochondrial mediated cell death and metal contribution in toxicity. Hence, 

metal chelation and its effects on toxicity may warrant study.    
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Table 1: Sand Extract Elemental Analysis Data 

 

 
 Plain Media Sand Extract Raw Sand 

Co59(LR) 60 162 20023 

Ni60(LR) <LOD 632 142015 

Cd111(LR) <LOD <LOD 84 

Sn118(LR) 7 <LOD <LOQ 

Sb121(LR) <LOD <LOQ <LOD 

W182(LR) 40 <LOQ <LOD 

Tl205(LR) <LOD <LOD 203 

Pb208(LR) <LOD <LOD 11889 

U238(LR) 0 5 267 

Ba138(LR) <LOD 383 108063 

Ce140(LR) 2 <LOD 20080 

La139(LR) 1 <LOD 9117 

Li7(LR) <LOD <LOD 38186 

Sr88(LR) 48 3008 280040 

Al27(MR) 2908 <LOD 45373340 

Ti49(MR) 25 <LOQ 622322 

V51(MR) <LOQ <LOQ 86969 

Cr52(MR) 23 37 223616 

Mn55(MR) <LOQ 1386 843391 

Fe56(MR) <LOQ 1203 45310882 

Fe57(MR) <LOQ 1242 46353387 

Cu65(MR) 97 22 32737 

Zn66(MR) 28 <LOD 80884 

Mo98(MR) <LOD 9 156 

Sn118(MR) 7 <LOD <LOQ 

Ba138(MR) <LOQ 397 112365 

Ce140(MR) 2 <LOD 21973 

La139(MR) 1 <LOD 9679 

As75(HR) 0 12 5843 

 µg/kg µg/kg µg/kg 
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FIGURE 1 
 

          A 

 
 

              B 

 
 

Figure 1: Cytotoxicity of Afghanistan sand extract. Cells were exposed to different 

concentrations of extract for 24 hr and cell viability assessed by A) LDH release and B) MTT 
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assay. * Statistically significant effects were found for the extract from 400 and 500 mg of 

sand/ml at p< 0.05. Data are the means + SEM of 4 experiments for each treatment group.  

 

 

FIGURE 2 

  

                   

                   A 

 

 
 

                 B 
 

 
 

 

Figure 2:  Oxidative stress is involved in sand extract-induced toxicity. A) Total antioxidant 

capacity after exposure to sand extract (500 mg/ml) with and without NAC for 24 hr. B) 

Reactive oxygen species generation as measured by DCF fluorescence. Data are the means + 

SEM of 4 experiments for each treatment group. * indicates a statistically significant effect of 

sand extract vs control and 
+
 indicates statistically significant effect of antioxidant NAC vs sand 

at p< 0.05 
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FIGURE 3 
 

 A 
 

 

 

 
 

 

 B 
 

 

 
 

 

 

Figure 3: Sand extract-induced mitochondrial disturbance. Cells were treated with sand extract 

(500 mg/ml) in the presence and absence of CsA for 3hr. A) Mitochondrial membrane potential 

monitored by Rhodamine-123 Fluorescence. B) Fluorescence photomicrograph using 

mitotracker red. Data are the means + SEM of 4 experiments for each treatment group. 

* indicates a statistically significant reduction in membrane potential of cells vs. control cells and 
+
 indicates statistically significant effect of the MPT blocker CsA vs sand extract at p< 0.05.  
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    C 
 

 
 

 

 

Figure 4: Cytotoxic effects of Afghanistan sand extract is mediated by mitochondrial 

dysfunction. A) Cytosolic cytochrome c was determined in cells treated with sand extract (500 

mg/ml) for 3hr in the presence and absence of CsA. B) Caspase-3 activity was assayed after 12 

hr of exposure using sand extract (500 mg/ml) in the presence and absence of z-VAD or CsA. C) 

Cell viability was determined after 24 hr of exposure to sand extract (500 mg/ml) in the presence 

and absence of NAC or CsA. Data are the means + SEM of 4 experiments for each treatment 

group.* Indicates statistically significant from control and 
+
 indicate statistically significant from 

sand extract exposure at p< 0.05 
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